If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+15x-35=0
a = 14; b = 15; c = -35;
Δ = b2-4ac
Δ = 152-4·14·(-35)
Δ = 2185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{2185}}{2*14}=\frac{-15-\sqrt{2185}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{2185}}{2*14}=\frac{-15+\sqrt{2185}}{28} $
| 4.2=7u-18.2 | | 5(y+8)=2(y+1) | | 3b*2b*5b=30b | | 72x+251=325 | | 6.5+f=17.11 | | 5x-42=107 | | 5x-5=44 | | 6x-80=100-4x | | 3y+44=104 | | 3y+44=76 | | 8x-32=512 | | 18=0.5t | | 6y-43=77 | | 6x-83=103 | | 6x-83=77 | | (8y=65)(2) | | 2x^2+x-5=2x+10 | | 2(20d+10)+11d=14d+20 | | 3(2+x)=-27 | | 5-4x=-9x-5 | | A=3.14x5.7^2 | | 3x^2+4x+12=-10 | | -41+3x-3=-23-3 | | 34+4r=-4(-2r-2) | | a(a+3)=2a+a3 | | -10x-3=-2x | | -6-6x=-6(1+7x | | 5y-60=80 | | -8+5x=8x+4 | | 3(2k+3)=6k+6 | | 9p+9p=43-19p | | 6y-136=112 |